
Automatic Image White Balancing using Deep Learning

Blake Sanie
Georgia Institute of Technology

bsanie3@gatech.edu

Dylan Small
Georgia Institute of Technology

dylansmall@gatech.edu

Abstract

White Balancing is a photo-editing technique to change
digital photos’ colors to better reflect the realistic colors
experienced at the scene itself. We create our own white-
balancing dataset and introduce a modular way to train
large pre-trained image models within this task. The per-
formance of these models are compared to each other and a
baseline custom non-pretrained Convolutional Neural Net-
work (CNN) to explore how well each model correctly white
balances given photos. We find that pre-trained transfer-
learning-based image models best represent latent informa-
tion about white balancing within images and thus are able
to perform best on this task when compared to both pre-
trained and non-pre-trained CNNs.

1. Introduction/Background/Motivation

1.1. White Balance

In the field of photography, graphic design, and greater
image processing, one common problem is poor camera
color calibration while in the field. As a result, images con-
tain a visually-off color profile that do not reflect the true
colors experienced at the scene itself. Professionals must
rely on post-processing measures to recreate a color pres-
ence missed altogether in-camera, as if going back in time.
The process of modifying an image’s color profile to be neu-
tral to the original scene is referred to by the industry as
White Balancing.

In practice, adjusting an image’s white balance is com-
monly achieved by tuning the temperature (yellow to blue)
slider and tint (green to magenta) sliders in graphical image
editing software, such as Adobe Photoshop. Alternately,
these programs define another method to neutralize tem-
perature and tint: manually selecting a scene-neutral tone,
which then adjusts white balance such that the point also
becomes image-neutral.

Scene-neutral tone: A color that may appear off-neutral
in the image, but is neutral with respect to the scene cap-
tured.

Figure 1. An illustration of computation white balancing by de-
tecting a scene-neutral tone, defining a transformation from scene-
neutral to image-neutral tone, and applying the transformation to
the original image.

Image-neutral tone: A color that appears neutral when
viewing the image, regardless of if the tone is neutral within
the real-life scene itself.

In other words, when all colors in an image are simul-
taneously scene-neutral and image-neutral, the image is ef-
fectively white balanced.

1.1.1 Research Question

However, these methods rely on human color intuition or
recollection of the scene’s original colors. Thus, this be-
comes a problem highly subjective for humans, but perhaps
one that can be made not only accurate and objective, but
automated by Deep Learning methods.

This project aims to explore the feasibility of applying
Deep Learning models and techniques towards white bal-
ancing within the image processing domain. Various mod-
els, methods, and frameworks are be tested and evaluated to
extract greater insight surrounding the problem presented.

1.2. Surrounding Color Science

Before proceeding, a brief overview of relevant color sci-
ence is in order. Inside a camera, a photosensitive sensor
quantifies the photos hitting its receptive plane. Then, a
processor encodes these readings into an image file, with
color and luminance represented by an industry-standard

1



spec, called a color model. Below are the color models dis-
cussed in this paper, each with a brief introduction:

1. RGB (Red/Green/Blue). Colors are represented as a
3-Tuple of red, green, and blue intensities. By this 3-
Tuple model, an image is comprised of three channels.
This is the most common, general purpose color en-
coding.

2. XYZ. Another 3-channel encoding with abstracted
channel values that allow the span of pixel values, col-
lectively known as color space, to closely resemble hu-
man perception and biases towards the spectral sensi-
tivities of the human eye.

3. LAB. Color decomposition presented as a luminance
channel, an abstract channel for temperature (A), and
an abstract channel for tint (B). It is important to note
that LAB color space has a neutral origin, the color
(n,0,0), in the center, meaning negative values for A
and B are present in cool-temperature or green-tinted
colors.

Invertible transformations are possible between the
above color models, allowing for color transformation op-
erations to occur in a different spatial domain, though on
the same original image. This choice of color space during
transformation is critically relevant both when estimating an
image-neutral tone, and later on applying white balance to
a whole image.

2. Dataset
This project utilizes the Unsplash Lite Dataset. In its

raw form, this dataset consists of a tabular view of 30k
images, with image metadata, description, and download
links to full-size previews. Focusing on images themselves,
we downloaded 5k randomly sampled images (restricted by
campus network bandwidth) to be used as our dataset for
training, validation, and testing.

Note that images are downloaded and made available at
high resolution, often at or above 4K. Since the models dis-
cussed later on require a lower resolution input, images are
resized and stored as necessary to comply with these down-
stream specifications.

2.1. Preprocessing

We assume our dataset of images, having come from pro-
fessional photographers and collectively low in color bias
by Law of Averages, are color neutral (white balanced).

For each image, we randomly generate an off-neutral
tone encoded in RGB to act as a scene-neutral one. This
will become the model’s target label. Each image is then
transformed so that the intentional off-neutral tone becomes
image-neutral. In other words, we proactively shift each

image’s color space from neutral to off-neutral, so that the
model can complete the sought-after (and now known) in-
verse transformation from off-neutral to neutral.

We implemented a custom DataLoader module to apply
intentional tints ad-hoc, adding dynamic augmentation and
resisting overfitting.

3. Approach

3.1. Approach Overview

We formulate our research problem as the following
task: build a model that will take an image input, and gen-
erate an RGB color output of a scene-neutral tone. Once
this tone is estimated, the image can be transformed within
a chosen color space to a white balanced state.

3.2. Model Considerations

With model development and underlying techniques and
architecture pushing the frontier of Deep Learning today,
we will utilize the following models to gain insight sur-
rounding the feasibility of the given task.

Since the objective lies in the domain of Computer Vi-
sion, specifically as a regression problem, we applied sev-
eral state-of-the-art models to effectively integrate struc-
tural, semantic, and composition information into inference.
Our approach innovates from past work on White Balancing
[1] by utilizing state-of-the-art pre-trained transfer models
which allow our data to fine-tune a model that already has
an implicit embedding of image features.

We also trained our own Convolutional Neural Network
(CNN) to evaluate if the task is already feasible, and to what
degree successful, with a simple architecture and fewer
trainable parameters.

We believe these models will be successful due to the
large and diverse amount of data we have procured in
conjunction with using state-of-the-art transfer-based pre-
trained models to minimize test loss.

3.2.1 Pre-trained Models

The Hugging Face platform allows Machine Learning engi-
neers to download weights and underlying architectures of
state-of-the-art models for direct use in PyTorch. We lever-
age this toolkit to fine-tune complex pre-trained models that
already understand latent factors about images. We use both
transformer-based models and CNNs. For each pre-trained
model, the final layers are fine-tuned to fit the given task,
with all other parameters gradient-fixed to leverage pre-
viously achieved feature extraction abilities. In our case,
we detached the following transfer-learning-based models’
classification head, and replaced it with a trainable m → 3
linear layer to accomplish regression onto RGB values.

https://unsplash.com/data
https://huggingface.co/


1. google/vit-base-patch16-224: ”Vision Transformer
(ViT) model [5] pre-trained on ImageNet-21k (14 mil-
lion images, 21,843 classes) [3] at resolution 224x224,
and fine-tuned on ImageNet 2012 (1 million images,
1,000 classes) at resolution 224x224.” Source and Fur-
ther Information.

2. microsoft/beit-base-patch16-224-pt22k-ft22k:
”BERT Pre-Training of Image Transformers (BEiT)
model [2] pre-trained in a self-supervised fashion on
ImageNet-22k - also called ImageNet-21k (14 million
images, 21,841 classes) [3] at resolution 224x224, and
fine-tuned on the same dataset at resolution 224x224.”
Source and Further Information.

3. microsoft/resnet-50: ”ResNet (CNN) model [4]
pre-trained on ImageNet-1k at resolution 224x224.”
Source and Further Information.

3.2.2 Custom Convolutional Neural Network

We also train our data on a custom built, non-pre-trained
CNN as a baseline. We use six convolutional layers each
with kernel size of 3 and padding of 1, each layer is fol-
lowed with ReLU activations, and a max-pooling layer (ker-
nel size = 2) after the 2nd, 4th, and 6th convolutional layer.
The final pooling output is passed into a neural network
with one hidden layer, hidden size of 512, with sigmoid ac-
tivations after each layer. The last layer of the neural net-
work maps from the hidden size to our output size of 3.

3.3. Evaluation Measures

Evaluation plays a crucial step in defining differentiable
criteria that the models can optimize though gradient de-
scent, as well as the structural configurations that affect
model prediction effectiveness with respect to the training
and testing data.

3.3.1 Model Criterion

As a means of experimentation and analysis through com-
parison, the following model criteria are implemented and
evaluated in combination with every other pipeline module.

1. Mean Squared Error (MSE) Loss: Attempt to min-
imize the L2 distance between predicted and ground-
truth scene-neutral color.

2. Delta E (∆E) Loss: The industry-standard color dif-
ference metric between display technologies. Effec-
tively implemented as the MSE Loss of the predicted
scene-neutral color, encoded in the LAB color space

The above criteria, for comparison purposes, are applied
in each white balance transformation color space: RGB,

XYZ, and LAB, which are all derived from the RGB en-
coded prediction.

3.4. Anticipated Problems

We expected a large time and space complexity of down-
loading, pre-processing, resizing, and training our data. We
also anticipated some of our initial model choices to possi-
bly change just in case we wanted to test out any other pop-
ular pre-trained models. To solve these problems, our code
deliverables for downloading, pre-processing, and resizing
the dataset images were multithreaded in order to speed up
preparation times. When creating the framework for train-
ing each model, builder design pattern was embraced. This
allows us to abstract any pre-trained model we want into a
builder class containing a function that loads the model into
a director class, which is itself generalized to train any built
pre-trained model according to the PyTorch API.

4. Experiments and Results

4.1. Training and Inference Framework

At this point, inputs (images) and outputs (RGB scene-
neutral colors) form feature-label pairs, and are batched for
training and inference. The color space in which off-neutral
color augmentation occurs, the model, the color space in
which the white-balance transformation occurs, and the fi-
nal criterion are all treated as modules in a pipeline that
simultaneously form combinatorial problem. We developed
a framework to execute every possible combination of these
elements and collect relevant results to then analyze which
methods are most suitable to the task, and why. This ap-
proach is also essential to future expandability, since more
modules can be added as the Deep Learning field matures,
and the experiment can be effortlessly reproduced and fur-
ther benchmarked.

We run each model for 10 epochs of our dataset, and
measure success by a lower criterion test loss, emphasizing
the importance of a model’s ability to generalize to unseen
data. Our goal is to compare each of our models’ test crite-
rion to find the model which best encodes latent information
that contributes to white balancing of a given image.

4.1.1 Hyperparameters

To ensure the transfer-learned models are adequately
trained before final evaluation, the testing/training loop is
performed with k-fold cross-validation with a 75%/25%
split.

Our own custom CNN was manually hyperparameter
tuned through explicit experimentation, adjusting number
of hidden layers, feature map size, and convolution channel
cardinality, to achieve minimal loss.

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k
https://huggingface.co/microsoft/resnet-50


Model Name Input Color Space MSE Test Loss ∆E Test Loss
(RGB-encoded)

google/vit-base RGB 4.74e-3 5.39e-4
google/vit-base XYZ 3.72e-3 2.97e-4

microsoft/beit-base RGB 5.34e-3 7.72e-4
microsoft/beit-base XYZ 6.67e-3 1.11e-3

microsoft/resnet RGB 3.52e-2 8.12e-3
microsoft/resnet XYZ 3.47e-2 7.69e-3

non-pretrained CNN RGB 2.01e-2 2.44e-3
non-pretrained CNN XYZ 1.40e-2 1.94e-3

Table 1. Results for training across all models and color spaces for input and criterion. Model names have been shortened for reading
purposes. Best results of each loss column are bolded for both XYZ and RGB input color space.

Figure 2. A graphical overview of the project’s training plan -
highlighting the augmentation operation during prepocessing, and
white balance fitting operation during training.

In all cases, learning rate is chosen to train the model
near the criterion’s local minimum within ten epochs for
consistency between model experiments.

4.1.2 Result Collection

For each tested pipeline of color spaces, models, and crite-
rion, the following metrics are tracked for further analysis:
Augmentation Color Space, Criterion Color Space, Crite-
rion, Final Train Loss, Final Test Loss.

4.2. Results Analysis

After training each model on different input and crite-
rion color spaces, we are able to compare them using their
minimum test loss after k-fold cross validation. Table 1
contains the minimum loss information for each model and
respective input and criterion color spaces. From this ta-
ble, google/vit-base-patch16-224 stands out as the model
with the minimum test loss for all input and criterion color
spaces. Thus we can conclude that out of the pre-trained
models, Google’s Vision Transformer best encodes the fea-

Figure 3. Input, output, and ground truth examples of some of
the images in our dataset through the google/vit-base-patch16-
224 model.

tures of images that are used for white balancing. Figure
3 shows examples of our pre-processed data, model output,
and ground truth.

However, a surprising result was that our custom non-
pretrained CNN was able to outperform microsoft/resnet-
50 completely. We theorize this could be because the fea-
tures that the pre-trained resnet CNN learned may not con-
tribute as well to white balancing, and only adding one lin-
ear layer to these embeddings may not have been enough
to predict the correct output, whereas our CNN upsamples
image data and uses a hidden layer to predict its output.
Nevertheless, the transformer-based pre-trained models are
able to perform over 10 times better than the CNN-based
models.

We recorded train loss to compare with test loss for each
model over all 10 epochs of training to ensure that each
model was not overfitting. Figure 4 shows steady con-



vergence for the microsoft/beit-base-patch16-224-pt22k-
ft22k and microsoft/resnet-50 model, whereas google/vit-
base-patch16-224 and our custom non-pretrained CNN
quickly converge. Our custom non-pretrained CNN exhibits
slight overfitting and a jittery loss curve which can be at-
tributed to the high number of datapoints with respect to a
lower number of trainable parameters in our custom CNN
when compared to the pre-trained models.

Figure 4. Train and Test ∆E loss for each model over 10 epochs
of training.

5. Future Work

From our analysis of our experiment results, we recom-
mend that future work on the White Balancing task be fo-
cused on transformer-based models. Not only do our results
show that these models have better performance than their
CNN counterparts, but they train faster as well and are thus
able to be hyperparameter tuned more time efficiently. Ad-
ditionally, this exploration of Deep Learning White Balanc-
ing raises a need for more testing to elaborate on the ability
of pretrained models to encode white balancing information
effectively. Through the builder design pattern in our code,
we modulate this task and make it easy to connect any pre-
trained model to be fine-tuned on our pre-processed dataset.
Future work could also include making an even more effec-
tive custom model without transfer learning methods that
is highly optimized to this task; even more effective than
fine-tuned transfer-learning based models.

6. Contributions

Table 2 contains an overview of which team member
contributed which work to our project.

7. Supplemental Materials
Our code can be found at https://github.com/

dylan-small/DeepColorBalancing

References
[1] Mahmoud Afifi and Michael S. Brown. Deep white-balance

editing. CoRR, abs/2004.01354, 2020. 2
[2] Hangbo Bao, Li Dong, and Furu Wei. Beit: BERT pre-training

of image transformers. CoRR, abs/2106.08254, 2021. 3
[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 3

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 3

[5] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao
Zhang, Zhicheng Yan, Masayoshi Tomizuka, Joseph Gon-
zalez, Kurt Keutzer, and Peter Vajda. Visual transformers:
Token-based image representation and processing for com-
puter vision, 2020. 3

https://github.com/dylan-small/DeepColorBalancing
https://github.com/dylan-small/DeepColorBalancing


Student Name Contributed Aspects
Blake Sanie Data creation, pre-processing, resizing of dataset. Implementation of PyTorch custom Dataset and DataLoader code.

Implementation of algorithm to train each model over various input and criterioncolor spaces.
Dylan Small Implementation of model architecture and training/validation loop.

Creation of modular classes to train different pre-trained and/or custom models

Table 2. Contributions of team members.


