The Perfect Pitch - Baseball Meets Computational Physics

Blake Sanie | Cirr Georgia PHYS 6260, Dr. John H. Wise

Mechanical Modelling

Background and Topic

Pitchers apply spin to thrown balls to induce deceiving movement. Can we

model this behavior and further analyze the peak of human pitching ability?

Simulation Methods

Runge-Kutta, 4th Order (RK4)

 $f(\vec{v}, \vec{w}, t) = \vec{a}_G + \vec{a}_D + \vec{a}_M$

 $k_1 x = h + f(\vec{v}, \vec{\omega}, t)$ $k_{2,\vec{v}} = h + f(\vec{v} + 0.5 * k_{1,\vec{v}}, \vec{\omega}, t + 0.5 * h)$ $k_{2,x} = h * f(\vec{v} + 0.5 * k_{2,x}, \vec{\omega}, t + 0.5 * h)$ $k_{4,d} = h * f(\vec{v} + k + 3, \vec{v}, \vec{\omega}, t + h)$ $\vec{v} = \vec{v} + (k_1 \sigma + 2 * k_2 \sigma + 2 * k_3 \sigma + k_4 \sigma)/6$

 $k_{1,r} = il$ $k_2 z = \vec{v} + 0.5 + k_1 z$ $k_{3,\vec{v}} = \vec{v} + 0.5 * k_{2,\vec{v}}$ $k_{1,r} = \vec{v} + k_{1,r}$ $\vec{x} = \vec{x} + h * (k_1 r + 2 * k_2 r + 2 * k_3 r + k_4 r)/6$

Search Methods

Nested Binary Search

As human exertion parameters (ball speed, spin rate) change, aiming 04RA. VRA, FAA, and SAA) must be simultaneously tuned to achieve the endsimulation target scenario.

- 1. Define lower and upper bound human exertion parameters
- a. Terminate if target scenario is physically unreachable
- b. Define lower and upper bound aiming parameters
- c. Find necessary aiming parameters with Binary Search
- 3. If the target scenario is physically reachable but not minimally ['barely'] be safely reduced.

Final Results and Conclusions

- In the pursuit of recreating a "Rise", "Dive", and "Drift" ball, it is evident that super-human physical ability would be necessary.
- "Rise" Ball As pitch speed increases beyond human-capable levels, the effect of priease height becomes increasingly insignificant. Securitized SEM values are noticeably larger than anality's effects
- "Dive" Ball Release Height does not play a significant effect in RPM requirement: Pitch speed is the driving factor. Additionally, required RPM increases approximately linearly with pitch
- · "Drift" Ball Releasing the ball further in the -y direction requires a lower spin rate because the Magnus Effect must only reproduce a smaller horizontal release angle difference

MI R Reet Ditch Trajectories (by RPM)

- festbell - Alexis Diez, 2.4k ram - slider - Sam Moll, 3.1k rpre - changeup - Devin Williams, 2.7k rom

