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Abstract

Within the game of baseball, pitchers apply spin to their deliveries to create deceptive movement. Three deliveries regarded as
urban legend are the ”Rise”-Ball, ”Dive”-Ball, and ”Drift”-Ball - all scenarios that are claimed to have been seen, but physically
questionable. This project determines the minimum feasible spin rate required by pitchers to complete each inspected delivery.
Precise simulation models and optimization search procedures are designed to answer such questions. The results presented indicate
that spin rates orders of magnitude above the upper-bound of human performance are required to produce such scenarios. To
expand, the infeasibility of these deliveries by human pitchers suggests that human perception biases exaggerate the curve effect of
spin-defined pitches. Further, this project’s modelling methods and approach serve as a foundation for future physical movement
feasibility analysis, both in athletic and greater physical domains.
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Python
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1. Introduction

1.1. Background

Above effective strategy and solid player fundamentals, gain-
ing a competitive edge in the game of Baseball involves lever-

aging Physics principles. Most plays begin with a hitter, or bat-
ter, facing off against a pitcher. The pitcher attempts to throw a
pitch to the hitter with the goal of maintaining accuracy (hope-
fully to throw the ball in the strike zone). However, pitches in
the strike zone are more easily hitable, thus pitchers have re-
sorted to adding additional movement to pitches to deceive a
hitter’s perception. This effect is accomplished by managing
spin applied to the ball at release.

The best-known pitch with enhanced movement is the curve-
ball – a pitch thrown with topspin to dive towards the earth
faster than with gravitational acceleration alone. Other decep-
tive pitches include the slider, which dives down and away from
a right-handed hitter, and the changeup, which drifts into a
right-handed hitter though often thrown with lower speed. Even
the most common pitch, the fastball, is defined by its spin – the
backspin allows the ball to fall towards the earth at a rate slower
than pure gravitational acceleration.

The core objective of this project is to precisely model the
movement of such pitches, down to the granularity of several
key parameters. This task involves building the appropriate
simulation model and visualization methods to analyze pitch
movement in various scenarios, accurate to real-world behav-
ior.

1.2. Research Question

In Baseball, three key pitching achievements are regarded as
the ultimate frontier of pitching abilitiy. These dream-catching
pitch deliveries are the

1. ”Rise”-Ball: a pitch thrown with a fastball grip, that itself
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curves upward through the air while still intersecting the
strike zone.

2. ”Dive”-Ball: a pitch thrown with a curveball grip, that
traverses vertically across the entire strike zone. That is -
with appropriate spin, a lower-corner strike is called, but
without any spin, an upper-corner strike is called.

3. ”Drift”-Ball: a pitch thrown with a slider grip, that tra-
verses horizontally across the entire strike zone. Simi-
lar to the ”Dive”-Ball, with appropriate spin, an outside-
corner strike is called, but without any spin, an inside-
corner strike is called (with a right-handed pitcher and hit-
ter).

This project will objectively determine, in a reproducible and
parameter-defined setting, the minimum physical abilities nec-
essary to achieve each of the above pitch deliveries; further-
more, if the extent of such abilities are achievable by human
players who can produce such pitches in a real-world game set-
ting.

In concise and objective terms, this project will answer:

1. What combination of pitch speed, spin rate, and release
height are minimally required to throw a ”Rise”-Ball?

2. What combination of pitch speed, spin rate, and release
height are minimally required to throw a ”Dive”-Ball?

3. What combination of pitch speed, spin rate, and lateral
release point are minimally required to throw a ”Drift”-
Ball?

1.3. Motivation and Numerical Approach

As time continues, many players and spectators may claim
to posses or have witnessed these pitch deliveries. However,
human perceptive biases play a role in these anecdotal conclu-
sions. By embracing a purely numeric approach built upon pre-
cise computing methods, the above research question may be
clearly, directly, and accurately addressed once and for all.

Additionally, with a foundation in reproducible program ex-
ecution and simulation tooling, this project has the ability to
fine-tune numerous input parameters to several key output pa-
rameters, described later in the work.

1.4. Prerequisite Physics Material

As the ball travels throughout the atmosphere, it is subject
to acceleration from three major sources: gravity, air resistance
(drag), and the Magnus Effect (”Curve” effect resulting from
spin). The accelerations are symbolically defined below, with
brief intuition included.

1. Gravitational Acceleration: Constant ”free fall” accel-
eration, straight downward towards the Earth’s center of
mass.

a⃗G =
〈
0 0 −g

〉
g ≈ −9.8 m/s2

2. Acceleration by Drag: Acceleration experienced in the
direction immediately opposite of movement. Velocity has
second-order influence.

a⃗D =
−1
2m

CDρA|⃗v|2v̂

CD = Drag constant experimentally found to be .40

A = Cross-sectional area of ball, m2.

ρ = Atmospheric (fluid) density, Kg/m3.

m = Ball mass, Kg.

3. Acceleration by Magnus Effect: Acceleration occurring
perpendicular to direction of movement (note cross prod-
uct between velocity and angular velocity). Similar to
drag, velocity has second-order influence, but contribu-
tions of angular velocity are diminishing.

a⃗M =
1

2m
CMρA|⃗v|2(ω̂ × v̂)

CM = Magnus constant experimentally modelled by .39S .31

S =
2πr|ω⃗|
|⃗v|

ω⃗ = Angular velocity of ball, rad/s.

1.5. Literature Review

Below are three critical resources with relevant Physics ma-
terial and computing application innovations that inspired this
work.

1. Aerodynamics of Baseball, NASA. (3).
This source derives and applies kinematic formulas in the
context of Baseball. The site contains several pages go-
ing into medium detail with regards to drag on a sphere,
lift and drag on a baseball, trajectories of curveballs and
fly balls, ideal flow, and ballistic flight. Despite the com-
plete breadth of these topics that even fall outside the direct
scope of this project, NASA presents an informative foun-
dation to many of the end principles. For example, in the
discussion of drag on a baseball versus an ideal sphere, the
Reynolds number (inertial force divided by viscous force
of air immediately surrounding the ball’s surface) is ex-
plored, even though it is concluded that nearly all human-
thrown baseballs share a constant Reynold’s number. Fi-
nally, this site is a portal to several graphical simulations,
titled ”Curve Ball”, ”Curve Ball Expert”, ”Hit Modeler”,
”Hit Modeler Weather”, ”Flight Calculator”. These mod-
els are indeed detailed and in-depth, but are slightly unin-
tuitive and require manual experimentation to answer spe-
cific questions such as the ones posed by the project’s in-
troduction.
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2. The Physics of Baseball Pitching, University of Texas. (2).
This source is a math-dense explanation of a baseball’s
curving tendencies, going as far as suggesting methods
for building smoothly integrated simulations. The physics
content is fully vectorized and in agreement with that of
the NASA site (1). One slight difference noted is a small
discrepancy in empirically defined constants, such as the
drag coefficient. One new addition of this site is its discus-
sion of ODEs to solve the presented set of equations. The
source solves for the update in position and velocity with
respect to each axis using fourth-order Runge-Kutta, but
this derivation is a little unclear. Later on, this project de-
rives position and velocity themselves from acceleration
to avoid this confusion of approach. Finally, this source
inspects a truly deceptive pitch left out in this proposal:
the knuckle ball, a pitch with zero spin that moves unpre-
dictably by turbulent flow in the atmosphere. Even though
this pitch and its physical behavior is outside the scope of
this project, this information is still productive and gives a
more precise depiction of the variables at play in the sim-
ulation.

3. The Effect of Air on Baseball Pitches. (4).
This source is a concise piece tying together all aspects
that affect baseball movement through the air. The page
begins with a clear and intuitive description of an appropri-
ate coordinate space, which this work uses as inspiration
to model physical space within my own simulation. Es-
pecially insightful are the plots illustrating change in mo-
tion for different pitches, as this is a type of plot leveraged
in this project from several insightful angles. Lastly, the
piece is presented as a lesson, with each step logically in-
troducing the next. The author even includes reading ques-
tions that emphasize key ideas or prompt for computation
practice to reproduce or apply the derived steps. Before
embarking on implementation, these problems were inde-
pendently solved to yield a more complete understanding
of the source’s approach to this project.

2. Methods

2.1. Problem Formulation

Before proceeding with the core simulation model, the prob-
lem must be clearly and consistently articulated. Insights and
Analysis surrounding the research questions will arise by track-
ing a baseball’s flight from the pitcher’s release until the mo-
ment of intersection with the plane formed at the front of home
plate. At each sample point, ball position, velocity, and ac-
celeration are saved and stored in a time series data structure.
Later on, this data structure, technically implemented as a Pan-
das DataFrame object, can be inspected and compared between
simulation episodes.

With the simulation modelling a real-life game situation, a 3
dimensional coordinate system is established. The x⃗ axis moves
positively from the pitching mound towards home plate. The y⃗
axis moves positively from the pitching mound in the direction
of first base, perpendicular to the x⃗ axis. Finally, the z⃗ axis is

absolute (z = 0 signifies ground), spanning directly upwards
away from the Earth’s center of mass. The origin of this system
occurs at the front of home plate, at its horizontal center, on the
ground. For greater clarity, this implies that the pitching mound
occurs at a negative x coordinate, designed as such so that the
ball always moves with positive velocity in the x⃗ direction.

Figure 1: The simulation world frame illustrated between the pitching mound
and home plate

Furthermore, the simulation will rely on pre-defined spin an-
gles for the four inspected pitches: fastball, curveball, slider,
and changeup. These spin angles each denote the unit direction
of the corresponding ω⃗, the angular velocity vector. Intutively,
the direction of spin can be understood from a given ω⃗ by ap-
plying the ”Right Hand Rule”. The spin angles (assuming a
right-handed pitcher) utilized in this project are as follows:

1. Fastball: direct backspin.

ω̂fastball =
〈
0 −1 0

〉
2. Curveball: topspin with slight clockwise tilt.

ω̂curveball =
〈
0.196 0.981 0

〉
3. Slider: topspin similar to curveball, with greater clockwise

and upward tilt for greater intended horizontal movement
(away from right-handed hitter).

ω̂slider =
〈
0.408 0.408 0.816

〉
4. Changeup: backspin similar to fastball, with spin also oc-

curring towards the right for intended movement towards
a right-handed hitter.

ω̂changeup =
〈
0.100 0.995 0

〉

Figure 2: The four pitch grips and their respective spin angles visualized, from
a top-down view

Adding onto these world-frame definitions and constants, the
following parameters are established and intended to be tuned
for simulation experimentation.

1. Initial Position: The pitcher’s release point of the ball.
For the experiments leveraged in this project, the initial
position is considered to be

〈
−54 −1.5 7

〉
ft.
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Figure 3: Similar to Fig 2, the pitch spin angular velocity unit vectors (ω̂)
relative to the established world frame

2. Initial Speed: The ball’s speed when released by the
pitcher. Note only the initial speed is specified because
the simulation begins at pitch release, and one can expect
the ball to slow down throughout its flight by the effects of
drag.

3. Horizontal Release Angle (HRA): The pitcher’s release
angle parallel to the x⃗, y⃗ plane (parallel to the ground).
This parameter is used for aiming.

4. Vertical Release Angle (VRA): The pitcher’s release an-
gle parallel to the x⃗, z⃗ plane (up and down, from the pitch-
ing mound to home plate). Like HRA, this parameter is
used for aiming.

5. Forward Arm Angle (FAA): The angle of the pitcher’s
arm at the moment of release parallel to the x⃗, z⃗ plane, with
FAA=0 signifying the arm is vertical (strictly follows the
span of z⃗) when the ball is released (no vertical tilt towards
home plate).

6. Side Arm Angle (SAA): The angle of the pitcher’s arm
at the moment of release parallel to the x⃗, y⃗ plane, with
SAA=0 signifying the arm is horizontal and perpendicular
to x⃗ (strictly follows the span of y⃗) when the ball is released
(no side tilt towards home plate).

7. Ball Spin: the balls spin direction and magnitude ex-
pressed by the corresponding angular velocity vector ω⃗.

2.2. Pitch Simulation
Using the above defined parameters as the basis description

of each simulation episode’s starting state, a few more state de-
scriptors are established by compounding such input parame-
ters. Ball velocity, v⃗, is found by applying initial ball speed in
the direction of the HRA and VRA, subsequently converting the
cylindrical frame to the greater Cartesian system. Also, the ball
spin vector is redefined relative to the world frame by similarly
transforming ω⃗ by the FAA and SAA. At this point, the effect of
each describing parameter is in the Cartesian world frame, the
initial state of the simulation is set, and forward propagation
may commence.

To maintain precision while propagating forward in time, an
infinitesimal time step, ∆t is theoretically ideal, though imprac-
tical in computing methods due to the resulting infinitesimal

Figure 4: The Side Arm Angle (SAA) and Horizontal Arm Angle (HAA) aim-
ing parameters visualized from a top-down view, embedded within the world
frame

update. Thus, ∆t = 0.05 seconds is established to retain ac-
curacy while still allowing for reasonable simulation run time
(fewer than 10s), as numerous simulations will be run in se-
quence later on when searching for optimal input parameters.
Note that with respect to the forward propagation method, the
Leapfrog Method is not necessary since simulation backward
in time will not occur, thus energy does not explicitly require
conservation within the scope of our research question, espe-
cially when actors external to the ball (atmosphere) are heavily
involved and influential to ball movement.

To update ball position, velocity, and acceleration with each
time step, the Runge-Kutta 4th-order (RK-4) approach to
initial-value differential equations is implemented. This method
consists of defining a differential equation f that returns, or
models, the time derivative of the quantities used to support
the variable updated. In this case, that is f (⃗v, ω⃗, t)→ dv⃗

dt . Then,
these differential quantities are applied along a series of inter-
polated estimations (more specific and informed than purely
Euler’s method) to produce a precise update for ball position,
velocity, and acceleration. The RK-4 method is regarded as an
industry standard, thus its use in this project is widely justified.

More concretely, let f observe the ball’s current velocity, spin
(angle and magnitude), and current time step to produce the
ball’s estimated acceleration resulting from the acting effects of
gravity, drag, and the Magnus Effect.

f (⃗v, ω⃗, t) = a⃗G + a⃗D + a⃗M

Because kinematic laws define velocity as the time integral
of acceleration and position as the time integral of velocity, the
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Figure 5: The Vertical Release Angle (VRA) and Forward Arm Angle (FAA)
aiming parameters visualized from a side-down view, embedded within the
world frame

update for velocity must occur first before position can be up-
dated. In other words, the double integration process must oc-
cur in the proper sequence.

The new current acceleration is generalized to the result of
f (⃗v, ω⃗, t).

To update velocity, define intermediate values k∗,⃗v to repre-
sent approximations for changes in velocity interpolated be-
tween ti and ti+1. Finally, combine these differences and apply
additive to current velocity to compute the new velocity.

To update position, similarly define intermediate values k∗,x⃗
to represent approximations for changes in position interpolated
between ti and ti+1. Combining these differences and summing
with current position yields the new position estimate.

Below are the steps illustrated as an algorithm.

k1,⃗v = h ∗ f (⃗v, ω⃗, t)
k2,⃗v = h ∗ f (⃗v + 0.5 ∗ k1,⃗v, ω⃗, t + 0.5 ∗ h)
k3,⃗v = h ∗ f (⃗v + 0.5 ∗ k2,⃗v, ω⃗, t + 0.5 ∗ h)
k4,⃗v = h ∗ f (⃗v + k + 3, v⃗, ω⃗, t + h)
v⃗ = v⃗ + (k1,⃗v + 2 ∗ k2,⃗v + 2 ∗ k3,⃗v + k4,⃗v)/6

k1,x⃗ = v⃗
k2,x⃗ = v⃗ + 0.5 ∗ k1,⃗v

k3,x⃗ = v⃗ + 0.5 ∗ k2,⃗v

k4,x⃗ = v⃗ + k3,⃗v

x⃗ = x⃗ + h ∗ (k1,x⃗ + 2 ∗ k2,x⃗ + 2 ∗ k3,x⃗ + k4,x⃗)/6

2.3. Method Validation and Real-World Benchmarking

To clearly illustrate the correctness of this simulation model
before continuing to the research questions, 3-dimensional vi-
sualization plots are produced for each pitch type.

At this point, reasonable values for the set of initial input
parameters are brainstormed as a sanity check.

To further ensure correctness, real-world Major League
Baseball (MLB) pitching metrics are obtained to reproduce
pitch movements by top-league pitchers. Two datasets from the
last complete season (2022) are obtained from Baseball Savant,
by MLB (1). The first expresses pitch speed metrics, includ-
ing average speed for each pitch type in the pitcher’s arsenal.
The second expresses pitch spin metrics, including average spin
rates for each pitch type in the pitcher’s arsenal. Pitch grips and
angle of spin are maintained by the previously formed assump-
tion. With this data in hand, pitches are simulated according to
the fastball, curveball, slider, and changeup of league-leading
speed and spin.

Figure 6: Pitch trajectories from release to strike zone intersection for the aver-
age MLB fastball, curveball, slider, and changeup

Figure 7: Pitch trajectories from release to strike zone intersection for the top-
spin (most deceiving) MLB fastball, curveball, slider, and changeup. Pitcher
names are displayed for credit and validation

Since the resulting plots indicate accurate reproduction of
pitch movement, the underlying methods are validated and the
research questions may be investigated with this pitch move-
ment model as a foundational tool.
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2.4. Solution Search and Optimization

Thoroughly answering the research questions involves the
discovery of optimal physical input parameters to the simula-
tion model, not just parameters that result in the target scenario
(”Rise”-Ball, ”Dive”-Ball, ”Drift”-Ball).

The Binary Search algorithm acts as an effective starting
point to uncover these solutions. However, a few adjustments
must be made to this algorithm to comply with the project’s
objectives.

Firstly, Binary Search fundamentally operates in a one-
dimensional observation domain to solve for a secondary vari-
able; our problems involve searching across two-dimensional
spaces for a third variable. More precisely, in the case of
the ”Rise”-Ball and ”Dive”-Ball, a minimal RPM measure is
mapped across a grid of pitch speeds and release heights. For
the case of the ”Drift”-Ball, this grid consists of pitch speed ver-
sus lateral release point. Thus, Binary Search must be applied
for each grid point, treating the input parameters describing that
grid point as constant.

Secondly, the nature of our simulation task enables unsta-
ble upper and lower boundaries. That is, whenever RPM is
adjusted as an input, aiming parameters such as HRA, VRA,
FAA, and SAA must be adjusted accordingly. This disrupts the
direct computation for minimal RPM, as tuning this value then
requires aim to be tuned, again requiring RPM to be tuned, and
so on. Thus, Binary Search is adapted to exponentially reduce
the search space as usual, with the added detail of restarting
the Binary Search operation on more suitable boundary points
if a solution is found, though detected to be sub-optimal. The
below pseudo-code illustrates this adaptation of Binary Search,
referred to as Nested Binary Search:

1. Define lower and upper bound for ball spin (RPM). Be-
cause the search space decays exponentially and conver-
gence is guaranteed to occur in this case if a solution exists
(because ball end position is continuous), it is sufficient to
deliberately initialize extreme boundaries.

2. Determine the best-case aim to satisfy the target scenario,
using Binary Search. Tune HRA, VRA, FAA, and SAA
as mentioned above so that the ball achieves the desired
behavior.

(a) Terminate eagerly (preempt further algorithm execu-
tion) if the target scenario is detected to be physically
unreachable. For instance, if the ball already ends
above the strike zone, and is not rising for the given
RPM, a rise ball is not physically possible by simply
changing aim.

(b) Define new lower and upper bound aiming parame-
ters, preparing for recursive call.

(c) Recurse towards solution by continuing Binary
Search algorithm.

3. If the target scenario is found, and is thus physically reach-
able, but not minimally (“barely”) reachable, recurse on
the partitioned parameter space where exertion (measured
in ball spin, RPM) can be safely reduced.

This ”Nested” Binary Search variant is necessary, for exam-
ple, to not only ensure that a “Rise” Ball can occur by a solution
RPM and its simultaneous aiming configuration, but that those
solutions are themselves the minimum necessary to “barely”
rise the ball when intersecting the strike zone.

The result of applying Nested Binary Search for RPM across
specified input grids is a density plot, or ”heatmap”, of the min-
imally necessary spin rates to achieve the delivery of a ”Rise”-
Ball, ”Dive”-Ball, and ”Drift”-Ball. These heatmaps convey
not only the human abilities necessary for such pitch deliver-
ies, but suggest patterns that reflect and support the underlying
Physical principles.

3. Results

Originally, the objective of this project was established as de-
termining the human output requirements (i.e. ball spin require-
ments) to successfully deliver a ”Rise”-Ball, ”Dive”-Ball, and
”Drift”-Ball. Having run the above search algorithm across re-
producible simulation episodes, the following heat plots present
the final results.

In summary, for all three cases, the required human RPM
output is much higher than reasonably attainable. This does
not imply physical implausibility, but such spins can only be
generated by assistive machines, or robots, keeping the object
and all other variables constant.

Even though this truth is revealed, each resulting heatmap
nonetheless provides an important perspective on the relation-
ships between release position, pitch speed, and rpm to succeed
in each target scenario. Below, each scenario is inspected in
detail.

3.1. ”Rise”-Ball

Figure 8: RPM requirement to deliver a ”Rise”-ball for a given pitch speed and
vertical release height

As pitch speed increases, starting from an easily-achievable
50 MPH to the humanly impossible level of 150 MPH, the ef-
fect of release height becomes increasingly insignificant. That
is, release height has a great effect at slow speed, but effec-
tively becomes a non-factor at the upper end of the pitch speed
spectrum. This is because with a slower delivery, gravity has a
greater period of time to cumulatively accelerate the ball down-
ward, which creates a need for a quadratically greater required
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upward acceleration induced by spin to overcome gravity and
produce lift.

Note that to deliver a ”Rise”-Ball, the required ball spin out-
put is much higher than in the case of the ”Dive”-Ball and
”Drift”-Ball because immense backspin is necessary to not only
match, but overcome the powerful effects of gravity and its un-
avoidable downward acceleration on Earth’s surface.

This simulation experiment defines a constant strike zone
frame, though in reality, the vertical height and offset of the
strike zone adjusts with the batter (knees-to-chest). Applying
analogous reasoning to releasing the pitch from a greater height,
greater RPM is required to deliver a ”Rise”-Ball to shorter hit-
ters compared to taller hitters.

3.2. ”Dive”-Ball

Figure 9: RPM requirement to deliver a ”Dive”-ball for a given pitch speed and
vertical release height

Across the entire pitch speed spectrum traversed and tested,
release height does not play a significant effect in required
RPM to deliver a ”Dive”-Ball. Instead, pitch speed itself is the
primary contributing factor. Additionally, the relationship be-
tween pitch speed and required RPM is modelled as linearly
positive. This is a unique result since the ”Rise”-Ball and
”Drift”-Ball’s required RPM inputs change roughly exponen-
tially with respect to change in either input parameter (pitch
speed or ball release position).

Unlike in the case of the ”Rise”-Ball, the horizontal width
and offset of the strike zone is constant and independent of the
hitter. This implies that the specifications of a given batter, such
as height, do not affect the feasibility of delivering a ”Rise”-Ball
to such hitter.

3.3. ”Drift”-Ball

One notable takeaway from the ”Drift”-Ball’s simulation ex-
periment is that releasing the ball further in the −y⃗ direction
results in a lower ball spin (RPM) requirement because the in-
duced Magnus Effect must only reproduce a smaller horizontal
release angle difference.

In concrete terms, the ”Drift”-Ball (released from a right-
handed pitcher) begins its path as if moving through the strike
zone’s inside corner (to a right-handed batter), but curves dur-
ing its flight to intersect the plate at the strike zone’s outside
corner. In the extreme case of a pitch release point far in the

Figure 10: RPM requirement to deliver a ”Drift”-ball for a given pitch speed
and horizontal release point

−y⃗, perhaps near third base, the angle between a direct path to
the plate’s inside and outside corners becomes negligible. Thus,
less curve, resulting from spin, is required as the ball is released
further in the −y⃗ direction.

By contrast, as the ball is released further along the y⃗ di-
rection, the spin applied to the ball by the pitcher must over-
come a more significant difference in horizontal release angle
if spin were not involved, making throwing a pitch at such spin
rate (RPM) even more infeasible by humans, and raising the
requirement for a more powerful theoretical pitching machine.

4. Summary and Conclusions

This project aims to determine the minimum pitching abili-
ties (ball spin rate, RPM) required to produce three mythically
pitches. The ”Rise”-Ball is a pitch crossing home plate as a
strike, rising across the front plane as it does so. The ”Dive”-
Ball begins its trajectory shooting for the top edge of the strike
zone, but dives downward to end at the bottom edge of the strike
zone. The ”Drift”-Ball begins its trajectory shooting for the in-
side edge of the strike zone, but drifts horizontally to end at the
outside edge of the strike zone. In each of the three above target
scenarios, ball movement manipulation is required by applying
spin.

Numerically evaluated by applying Nested Binary Search
across a physically-precise ball movement simulation, the re-
quired ball spins (RPM) fall significantly outside the human-
achievable range by up to six orders of magnitude (x1000000).
Still, the patterns that arise from how RPM requirement
changes with respect to the input parameters highlights and re-
flects the underlying Physical laws governing the problem en-
vironment.

Interestingly, the real-life occurrence of these three pitch de-
liveries have been claimed to be witnessed. By the unbiased,
purely analytical findings of this project, it is possible that the
observation of such a delivery is affected by the biases of hu-
man perception. Further, since the curving movement of a base-
ball is artificial, humans may pay greater attention to the effect
and place greater attribution to pitch spin with regards to hit-
ter deception and batting difficulty. This is supported by base-
ball game broadcasts and videos showcasing eye-catching pitch
movements that may appear, for instance, to rise while crossing
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the plate. However, the intentional camera angle, incomplete
user depth-perception, and other perception-influencing factors
create the illusion of a true ”Rise”-ball. This idea is illustrated
by the initial plots presented in this piece, demonstrating maxi-
mal pitch movement by top ball-spin producing pitchers in Ma-
jor League Baseball, which falls far from the extreme effects of
the three investigated pitch deliveries.

Looking forward, this project and its methods bring several
impacts and research opportunities. The effects of spin, or the
greater Magnus Effect, is not limited to the game of Baseball.
Within athletics, the strategic and intentional application of pro-
jectile spin is required to gain a competitive edge when deliver-
ing:

1. a deceptive, high movement Table Tennis (Ping-Pong) ser-
vice

2. a maximum-speed Volleyball service that remains in
bounds

3. a Tennis return that stays optimally close to (above) the net
4. a Soccer penalty kick that curves its trajectory out of the

goalkeeper’s reach

and the list continues. Using the experiment and simula-
tion setup defined in this project, parameters and constants
(ball/projectile specifications and properties, world frame, etc)
can be adjusted to easily and simply adapt to surrounding re-
search questions in the realm of computationally-driven athletic
performance.

Outside of athletics, the Magnus Effect plays a key role in
upholding many physical achievements, such as aircraft devel-
opment. Though these phenomena still produce an air pressure
separation to induce lift, the notion of spin is not centrally in-
tegrated like the research methods highlighted in this project.
Nonetheless, since the simulation model forward-propagates
kinematic measurements over time, if new acceleration com-
ponents are computationally defined and integrated to the base
f function, this project’s methods can be applied towards spin-
less scenarios as well.

In conclusion, though this project is aimed to solve specific
research questions surrounding pitch movement in Baseball,
its implications and refined methods serve as a foundation for
greater experimentation and research across domains of physi-
cal movement.

5. Code Deliverables

The codebase to reproduce these experiments can be found
at this GitHub Repository. The main.ipynb contains core logic
in modular cells of Python code. To request repository access,
email the project author: Blake Sanie, bsanie3@gatech.edu.
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