
LEENet: Learned Early Exit Network
Learning Optimal Early Exit Policy for Efficiency Improvements in DNNs
Austin Chemelli, Anthony Wong, Blake Sanie, Dylan Mace, Dylan Small, Nic Zacharis

Project Information

• Place classifiers at multiple locations throughout the model
• At each potential exit, a confidence value dictates whether to use the exit

• If threshold met, classify image

What is Early Exit?

Our Approach
• Insert “gate layer” to

decide whether to exit
• Learn gate layer

parameters to optimize
accuracy/cost tradeoff

• Insert hyperparameters
for tuning tradeoff

System Architecture
+

Pretrained Components

• Model Architectures:
• ResNet50: TorchVision
• VGG11: TorchVision
• DenseNet121: TorchVision

• Datasets
• ImageNetTE: HuggingFace

• 12,000 320x320 images, 10 classes
• CIFAR-10: HuggingFace

• 6,000 32x32 images, 10 classes
• CIFAR-100 HuggingFace

• 60,000 32x32 images, 100 classes
• Previous Early Exit Implementation Code:

• EENet: Learning to Early Exit for Adaptive Inference (Ilhan et al.)
• Paper: arXiv
• Code: GitHub

Open Source Components Utilized

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg11.html
https://pytorch.org/vision/main/models/generated/torchvision.models.densenet121.html
https://huggingface.co/datasets/frgfm/imagenette
https://huggingface.co/datasets/cifar10
https://huggingface.co/datasets/cifar100
https://arxiv.org/abs/2301.07099
https://github.com/git-disl/EENet

• OptionalExitModule
• Wrapper class for converting a pretrained layer into an exit layer

• EarlyExitModel
• Wrapper class for converting a pretrained model into a LEENet model

• EarlyExitTrainer
• All logic for training classifier heads and gate layers

• main.ipynb
• Jupyter notebook for creating LEENet models / training exit classifiers

• alpha_tuning.ipynb
• Jupyter notebook for training gate layers with varying alpha values

• exit_vis.ipynb
• Jupyter notebook for calculating data metrics and generating test visualizations

• alpha_tuning_results.ipynb
• Jupyter notebook for generating frontier curves for all trained model alpha values

System Architecture

Code Walkthrough - Model Wrapper

Training Process

• Train each early exit classifier
• These can be trained individually since they are

unrelated
• Loss: Categorical Cross Entropy
• Data Ratio: 80/20 Train/Test

• Train final classification layer
• This is just transfer learning onto your dataset
• Loss: Categorical Cross Entropy
• Data Ratio: 80/20 Train/Test

• Train gate layers
• These have to be trained at the same time
• Loss: Custom Loss Function (next slides)
• Data Ratio: 80/20 Train/Test

Training Process

OptionalExitModule Forward Pass
• Input gets flattened

• Output Size: (n,)
• Dot product with gate layer parameters

• Output Size: (1,)
• Decide whether to exit

• Gate layer output above threshold
• If exit, classify n input to logits

• Output Size: (n_classes,)
• If not exit, feed through original network

Code Walkthrough - Early Exit Module

Code Walkthrough - Classifier Training

Code Walkthrough - Gate Training

Custom Gate Loss Function (Batch Size n)

Minimize CE Loss (Maximize Accuracy) Minimize Computational Cost (Maximize Efficiency)

Control Weighting of Accuracy + Cost

• Iterate over all images in the batch
• Calculate product summed over all gates:

• Cross Entropy loss of:
• y : true classification
• ŷi : predicted classification logits from gate i

• Probability of exiting at gate i:
• gi : exit confidence for gate i (larger means more confident)
• ḡj : forward confidence for gate j (equal to 1-gi)

Minimize this term for higher net model accuracy

Maximizing Accuracy

• Iterate over all images in the batch
• Calculate product summed over all gates:

• Cost of exiting at gate i:
• Derived as % parameters utilized after the first exit
• Value ranges from [0, 1]
• Normalized so c[0] = 0 and c[-1] = 1

• Probability of exiting at gate i:
• gi : exit confidence for gate i (larger means more confident)
• ḡi : forward confidence for gate i (equal to 1-gi)

•

• Minimize this term for lower net inference cost

Maximizing Efficiency

● Alpha weights both subequations of our loss function
○ In the range [0, 1]

● Changing alpha allows for the loss function to tailor model behavior
○ α = 0 : weight loss for accuracy only
○ α = 1 : weight loss for computational efficiency only
○ α > 0, α < 1 : weight both accuracy and computational cost

● Optimal alpha depends on the underlying dataset
○ Different datasets have varying tradeoffs between accuracy and efficiency

● Alpha increases the interpretability of our methodology
○ Single hyperparameter that easily allows for emphasizing model behaviors

Controlling Accuracy/Cost Tradeoff _acc_ _cost_

Project Results
(across varying alpha values)

Results (Frontier Curves for All Models)
1.47x

Inference
Speedup

38%
Cost

Reduction

DenseNet121/CIFAR-100 ResNet50/ImageNetTE VGG11/CIFAR-10

• In the above curves, we can see a general trend of as accuracy increases, computational cost (time) also increases.

• Furthermore, we can observe that alpha tends to decrease as accuracy and time increase. This corresponds with with our loss function.

• Another interesting observation is the subtle difference in the accuracy vs time trend lines for each model.

• DenseNet121 has more of a linear shape.

• ResNet50 slowly increases and then sharply increases as alpha begins to decrease , it is also interesting to note most alpha values are
clustered in the upper right quadrant of the graph.

• VGG11 has a somewhat linear shape; however once alpha is below 0.5, most of the accuracy stays about the same yet time increases.

Results (DenseNet121/CIFAR-100, α=0.55)

1.47x
Inference
Speedup

38%
Cost

Reduction

10%
Accuracy
Reduction

Results (ResNet50/ImageNetTE, α=0.75)

1.43x
Inference
Speedup

69%
Cost

Reduction

12%
Accuracy
Reduction

Results (VGG11/CIFAR-10, α=0.5)

1.08x
Inference
Speedup

51%
Cost

Reduction

8%
Accuracy
Reduction

TMP IMG

Correct Examples: Wolf (VGG11/CIFAR100, α=0.6)

Exit 2 of 5

Exit 3 of 5

Consistent Face Scale
and Position

Discoloration, scale and
position variation

Incorrect Examples: Wolf (VGG11/CIFAR100, α=0.6)

Fox Seal Fox

Rabbit Flatfish Turtle

Exit 2 of 5

Exit 3 of 5

Subject/background
interference

Misleading subject
representation

DenseNet121/CIFAR-100 Sunflower Predictions (α=0.55)

Sunflower Exit Distribution:

Exit 1: 0% of Images

Exit 2: 69.67% of Images
- 78.9% Correct
- 21.1% Incorrect

Exit 3: 24.67% of Images
- 85.1% Correct
- 14.9% Incorrect

Exit 4: 5.67% of Images
- 94.1% Correct
- 5.9% Incorrect

• Code cleaning + implementation improvements
• Parallel processing of classification heads

• Improve time savings
• Changing gate and classifier architectures

• Allow users to query for max inference budget
• Binary search alpha terms to find most accurate model meeting budget constraint

• Train on a large set of different datasets/ML models
• AlexNet, MSDNet, LLMs(?),

• Continue to do comparison studies with previous work

Next Steps

• Mirror approach by EENet (Ilhan et al.)
• Convert α to latent variable
• Treat time as the dominant hyperparameter

• User requests a model that is faster than without Early Exit (ex: 2.0x, 1.5x,)
• User requests a model that on average runs within time budget (ex: 5ms, 3ms, ...)

• Modified model training process
• Perform binary search over α
• Begin with α = 0.5
• If speedup is too low, increase alpha -- boosts efficiency, compromises accuracy
• If speedup is too high, reduce alpha -- boosts accuracy, compromises efficiency

Max Inference Budget Optimization (Coming Soon)

• Currently, exit gate infers over all (flattened) module inputs
• Input size can grow exponentially as model layers accumulate
• VGG11 first gate layer - over 8k inputs

• Computational overhead, missed efficiency opportunity
• Poor decision generalization

• Re-architect exit gate structure
• Efficiently and uniformly collapse inputs into smaller size
• Before gate linear layer

• Avg. Pool / Max Pool
• Marginalize across channels
• Perform binning within each channel
• Combine both

• Dropout
• Randomly accept/reject inputs

Gate Input Dimensionality Reduction (Coming Soon)

• Early exits operate at batch level
• Some samples may exit, some continue forward

• Branch formed in computation graph
• Divergent branches can be computed in parallel

• Implementation considerations
• Pytorch natively allows for distributed load over multiple GPUs (Cuda)

• Sequential processing on single GPU
• Delegating Cuda tasks over Python threads (GIL) causes system errors

• Tensors do not serialize/deserialize across threads

Parallel Computing Optimization (Coming Soon)

