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Abstract

Image composition is an essential component of the
artistic process behind photography, graphic design, and
other visual spaces of creation. To achieve maximal aes-
thetic quality, artists aim to carefully capture a compo-
sition that is compelling, balanced, familiar, and com-
fortable to the viewer. The abstract nature of this task,
at first, seems resistant to the aid of computer systems
backed by artificial intelligence. However, this work ex-
plores this unlikely intersection of art, visual aesthetics,
and Knowledge-Based Artificial Intelligence (KBAI) in
the design and implementation of a real-world compo-
sitional guidance tool. Specifically, this work proposes
a concrete algorithm that models the infamous SOAR
cognitive architecture, combining Working, Episodic,
Semantic, and Procedural Memory for deliberation and
action over absorbed knowledge. The sections follow-
ing motivate the need for and curiosity behind KBAI
in an artistic setting and explain the technical design of
the underlying framework and its processes. Then, the
work presents visually insightful results to support in-
depth analyses and conclusions, altogether evaluating
the chosen KBAI approach to compositional guidance
and future work in the visual AI and computer vision
domain.
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Introduction and Motivation

Image Composition
At its core, photography is the art of producing impres-
sionable images. Deeper, photographers aim to collect com-
pelling captures that foster a connection with its viewer;
telling a story, characterizing a subject, or emphasizing
perspective. Achieving this task requires photographers to
leverage their creative visions, manipulating capture param-
eters at their will, often through improvisation. Aside from
lighting and choice of subject matter, compelling images are
grounded in the aesthetics of their composition.

Effective image composition can be formulated as discov-
ering the optimal framing for a given scene. Framing refers
to focal length (degree of zoom) and orientation (direction
the camera faces), with subject matter placed within the re-
sulting field of view. The pursuit of optimal framing is sub-
jective by nature - each photographer develops their own
compositional eye according to their distinguishing artistic
style.

Research Objective
This work develops a framework for applying computa-
tional methods to aid composition selection, both in the
field (at capture time, through change in framing) or in
post-production (through strategic cropping). Given the cur-
rent composition, the proposed system will creatively assist
the user by suggesting a directional frame shift (up, down,
left, right) and focal length adjustment (zoom in, zoom out)
if deemed likely to yield an aesthetic improvement. Nat-
urally, this task may appear contradictory - computers are
designed to produce objective insight through logical algo-
rithms, though artistic vision is an abstract concept with no
closed-form solution.

Creating a direct leap from algorithm design to optimal
composition selection is a daunting, arguably inapproach-
able task. However, leading Human-Cognitive theory helps
bridge this gap. Firstly, the basis for photographic visual
appeal can be broken down into several observable com-
ponents. Consequently, one can develop computer models
to detect the prominence of such features. In all, the cog-
nitive process of explaining composition aesthetic quality
can be reversed engineered; inspect an input image, evalu-
ate aesthetic-driving features, and draw an actionable con-
clusion to maximize such criteria for visual appeal.

Related Topics and Foundation

The pursuit of the research objective begins with establish-
ing a foundation of the following topics. Then, their per-
spectives and methods are combined to form the basis of the
proposed AI-based approach for image compositional eval-
uation and guidance.

Human Cognition and Aesthetic Perception
The field of Cognitive Psychology studies the mental pro-
cesses behind understanding and applying knowledge. Fur-
thermore, this domain represents otherwise complex and un-

bounded human reasoning behavior as a digestible logical
framework.

By the conclusions of Aesthetics (2018), user percep-
tion for image aesthetics can be reduced into three observ-
able qualities: Symmetry, averageness, subject conformity,
and curvature. Symmetry encompasses visual balance across
distinguishing image features, including captured objects,
textures, shapes, etc. In the most aesthetic case, the aver-
age viewer attention region is center aligned at an appropri-
ate scale to neither dominate or be dominated by negative
space. Averageness refers to image features inducing little
shock among the audience. Viewers find comfort in iden-
tifying familiar color, texture, and compositional patterns;
perception of over-the-top effects or unimaginable perspec-
tives results in viewer distress. Similarly, subject conformity
involves image content itself. To promote aesthetic quality,
image objects are to be represented according to their ex-
pected prototype, especially cognitively significant contents
such as faces and body parts. Lastly, it is found that humans
exhibit a preference for curved patterns and contours, as op-
posed to the same objects bounded by sharp edges.

Despite this proposed cognitive framework for modelling
visual appeal, the authors still note that personal preference
plays an equal role in their own aesthetic evaluation [1].

Image Saliency
In order to observe the described image aesthetic features,
a critical prerequisite task must be addressed: determining
which regions of an image attract viewer attention, and to
which degree. The Computer Vision industry refers to this
process as saliency detection. Concretely, given an input im-
age, output a saliency map, or expected attention heatmap
over the input pixels. Saliency and viewer attention will be
used anonymously going forward.

Though many advanced techniques have emerged in re-
cent years, the most intuitive remains the GradCAM algo-
rithm. Originally proposed in Grad-CAM: Visual Explana-
tions from Deep Networks via Gradient-based Localization
(revised, 2019), this process consists of identifying a target
object class, and propagating model loss with respect to such
class loss backward through the input input itself. As a re-
sult, a saliency map identical in dimension to the input is
formed, reflecting the classification’s sensitivity with respect
to each pixel. Further, in images where multiple subjects are
prominently detectable, GradCAM can be repeated with re-
spect to each of these class outputs to estimate viewer atten-
tion region contributed to each respective class [5].

Knowledge-Based AI Approach
Evaluating Approaches in Machine Learning
Previous works in surround research areas leverage machine
learning advances to directly infer image aesthetic quality
from input images themselves. Below is a list of notable sub-
missions:
• A multi-scene deep learning model for image aesthetic

evaluation (2016)
• Adaptive Fractional Dilated Convolution Network for Im-

age Aesthetics Assessment

https://www.cell.com/current-biology/pdf/S0960-9822(18)30766-8.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0923596516300662
https://www.sciencedirect.com/science/article/abs/pii/S0923596516300662
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Adaptive_Fractional_Dilated_Convolution_Network_for_Image_Aesthetics_Assessment_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Adaptive_Fractional_Dilated_Convolution_Network_for_Image_Aesthetics_Assessment_CVPR_2020_paper.pdf


• Analysis of Deep Features for Image Aesthetic Assess-
ment (2021)

• Image Aesthetic Assessment Assisted by Attributes
through Adversarial Learning (2019)
These are strictly data-driven methods, where data quality

and volume bias model effectiveness. Additionally, the re-
sults of such works may highlight discovered image patterns
correlated with highly aesthetic images, but these insights do
not deeply reflect human thought processes - such features
only arise by blindly optimizing towards the ground-truth
labels [6] [2] [3] [4].

Strengths & Relevance of KBAI
Employing Knowledge-Based Artificial Intelligence
(KBAI) that directly mirrors human-cognitive reasoning
and behavior is viable alternative. Ideally, data consider-
ations do not limit model performance, thus embracing a
data-free workflow has the ability to nurtures both sim-
plicity and effectiveness. After all, the labelled datasets
utilized in the mentioned studies are mined from photo
community sites flooded with subjective taste. By contrast,
a KBAI aesthetic evaluation framework can explainably and
deterministically produce the expected (grand-majority)
visual appeal by following a guided reasoning method - this
is the closest possible link between objective and subjective
evaluation. Finally, the previous studies did not dissect
image aesthetics into more granular components. This work
addresses the subproblem of evaluating and acting upon
image composition, where a specific cognitive framework
can be more rigorously defined.

The SOAR Cognitive Architecture
One framework for modelling human application of knowl-
edge is the SOAR Cognitive Architecture. This theory delin-
eates role-specific cognitive units. These blocks are tightly
coupled in interaction to yield explainable agent behavior.

According to SOAR, the deepest point of cognition is
long-term memory, partitioned into three parallel units:
• Procedural Memory: A routine of reasoning-focused

steps used as the basis for deliberating agent action.
• Semantic Memory: A knowledge storage model for em-

bedding and retrieving generalizations, facts, and other
prior context of the agent’s world.

• Episodic Memory: A series of distinct knowledge snap-
shots, such as events or one-time observations.
Placed below long-term memory is its complementing

cognitive layer: Working Memory. This SOAR unit is re-
sponsible for direct interaction with the agent’s actionable
world. Working memory accepts precepts, queries the three
components of long-term memory, combines the gathered
knowledge, and concludes a final action. The SOAR archi-
tecture simultaneously enables continuous learning. As new
observations cause internal impasses, the process of chunk-
ing strengthens each component of long-term memory to
both propose an immediate response, and protect against fu-
ture impasses when the precepts are encountered in the fu-
ture.

Theoretical Framework & Approach
In short, the proposed approach to image composition eval-
uation is to computationally model a SOAR-driven frame-
work. Luckily, industry-standard data structures, machine
learning models, and computational methods lend them-
selves to each component of SOAR as it stands. The task
at hand is to purposefully combine such computational units
into a greater workflow, evaluating image composition by
directly reflecting the studied thought process of the human
mind.

GradCam to Support Procedural Memory
Procedural Memory will is modelled as a programmatic se-
quence of conditions and operations (often called control
flow units). The following reasoning steps are employed for
deliberation:

1. Apply GradCam on an input image to obtain a saliency
map with respect to its plausible classifications (plural in
case the scene is dominated by multiple objects). This
forms a global saliency map, which will grow as Grad-
Cam is later applied with respect to other class predic-
tions. Leverage the academic-standard image classifica-
tion model Resnet50 as the base model.

2. Repeat (1) for each result class beyond the top classifi-
cation, from greatest to least confidence. Only combine
the saliency map with the global max if a new viewer at-
tention region is highlighted - this prevents the same ob-
ject in the scene (ex. a cat with competing classifications
of Cheetah and Leopard) from unnecessarily updating the
global saliency map multiple times. With this condition,
the multi-class GradCam loop terminates in reasonable
time without loss of effectiveness.

3. If multiple dominant saliency sub-regions are found (typ-
ically for multiple present objects), mathematically esti-
mate the center and spread of the saliency distribution.
Propose a zoom and reposition operation to center the at-
tention regions symmetrically, and achieve a comfortable
degree of attention spread over the image frame.

4. If a single dominant saliency region is found, an impasse
arises. Because the image focuses on a presumed single
subject, the artist may deliberatily break exact symmetry
to build a compelling composition. For instance, in the do-
main of portraits, viewer attention is focused on the facial
region. However, if the subject’s face is directly centered
in the image, too much negative space is reserved above
the head, with not enough of the subject’s body captured
below the head. In this scenario, the ideal composition
will more likely place the head between the top and mid-
dle of the frame to account, strengthening the average-
ness quality promoting aesthetic perception. When these
impasses occur, rely on the Episodic Memory module to
resolve the impasse.

KNN to Support Episodic Memory
Episodic Memory operates by ”soft-matching” a case sim-
ilar to the presented query, and applying the prior action.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9356612
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9356612
https://ojs.aaai.org/index.php/AAAI/article/view/3845
https://ojs.aaai.org/index.php/AAAI/article/view/3845


Computationally, a K-Nearest-Neighbor (KNN) unsuper-
vised model fits the task. Concretely, given a representation
of an image, search through the indexed catalogue of aes-
thetic images to find an attention-region match for the same
primary classification. Then, return a zoom and reposition
operation to mimic the stored case’s saliency distribution.
The KNN model is fit on a professional image dataset (Un-
splash), thus the assumption that the fetched cases offer a
compelling composition is reasonable. Lastly, KNN oper-
ates on indexing and comparing vector representations - this
image representation, or descriptor, will consist of a heavily
downsized and flattened image saliency map. This formula-
tion allows for cases to generalize to each other, as retaining
directly flattening a high-pixel dimension image will encour-
age overfitting.

Computational Working Memory Model

The computational implementation of working memory is
an agent that commands the Procedural (GradCam) and
Episodic (KNN) sub-models. First, the agent attempts to re-
solve image compositional guidance through the Procedural
module, falling back onto the Semantic module as neces-
sary (impasse). The Working module’s logic is trivially de-
veloped.

As noted, Semantic Memory is a cognitive module that
houses theoretical information. Because our task is safely
reduced to the assumptions that drive human perception of
visual aesthetics, our computation SOAR model does not re-
quire access to greater image context or photography under-
standing beyond image contents and representations already
observable by the Procedural and Episodic modules. Our ap-
proach will omit this component of the SOAR framework for
simplicity.

Hypotheses

Approach Effectiveness

Before embarking on experimentation and framework
(re)iteration, a study of the objective’s feasibility is in or-
der. Fundamentally, this approach is guided by knowledge-
based, rule-based methods. As a result, the quality of the
agent’s suggestions for improving image composition are
strictly bounded by the prerequisite assumptions used to
guide compositional improvement. In this work, the abstract,
complex, and ultimately subjective task is greatly reduced. If
multiple attention regions hold, the agent reduces its scope
to mathematically solving for predefined saliency symme-
try and scale. If the saliency map forms a single dominant
cluster, the agent simply defers its suggestion by recalling
the nearest professional-quality image, and matching to its
saliency parameters.

With this degree of complexity reduction, the knowledge-
based agent will surely and deterministically succeed. Any
dissatisfaction that arises from agents actions are attributed
to low quality of underlying assumptions, not the framework
of reasoning forming the agent’s backbone.

Anticipated Edge Cases
When more than one saliency region is prominent, compo-
sitional advice is guaranteed to be generated. If an impasse
is raised instead, resolution is dependent on the existence of
relevant cases in the KNN-backed image saliency database.
Compositional guidance cannot be resolved in two cases:

1. The dominant classification result is rare enough such that
mass image dataset used to populate the episodic image
descriptor index does not contain any cases corresponding
to that class.

2. The dominant classification result exists in the mass im-
age dataset, but no class-corresponding image in the
dataset contains a single dominant saliency region. Thus,
the Episodic module does not store any relevant cases for
this class.

The occurrence of these edges cases resulting in no ac-
tionable output can be minimzed by storing a greater volume
of cases in the Episodic memory component. This requires
finding, loading, and processing supplemental datasets to
build a more thorough and complete case index. Theoreti-
cally, there is no upper limit to the number of images shown
to and stored by Episodic memory, though this notion sup-
ports a hypothesis that the image class coverage will exhibit
diminishing marginal returns with respect to computational
resources (compute and memory) inherently utilized by the
Episodic module.

Preliminary Experiments & Findings
Extending GradCam for Multi-Class Saliency

Multiple Attention Region Example
As mentioned, the GradCam method yields a saliency map
contributing to a target output class. This work aims to build
upon single-class saliency by combining maps across a vari-
able number of prominent output classes. As a key building
block for future agent functionality, this process is imple-
mented and its offerings (versus drawbacks) analyzed first.

The image shown in Figure 1, framing a dog and a cat,
serves as a multi-class example. Given as input to the base
Resnet50 model, the output classes ordered by descending
probability are:

1. German Shepherd: 45%
2. Egyptian Cat: 18%
3. Tiger Cat: 3%
4. Tabby Cat: 2%
5. Eskimo Dog: 2%

Figure 1: An example
multi-class input image

And so on.



Figure 2: Saliency map
for output class ”German
Shepherd”

Figure 2 visualizes the
saliency map for the most
probable class: German
Shepherd. The most im-
pactful region of visual
attention appears around
the dog’s face and ears.
Since this is the first out-
put class inspected, this
saliency map serves as the
initial global map. The
same process single-class
GradCam process contin-
ues for subsequent class
predictions.

Figure 3: Saliency map
for output class ”Egyptian
Cat”

The saliency map for
the next most confident
class, shown in Figure 3,
suggests a visual attention
distribution across the cat
subject. Interestingly, the
model found the dog’s
ear useful in forming this
classification. This ob-
servation highlights one
weakness of GradCam
in estimating real-world
saliency: machine learn-
ing model parameters are
trained to strictly optimize
their objective, often taking
shortcuts if justified by the

end-result. These shortcuts may be illogical or lack explana-
tion altogether, thus resulting in artifacts when gradients are
propagated back through the input image.

Assuming the saliency map for class ”Egyptian Cat” is
combined with the global map (apply pixel-wise maximum),
total collected units of saliency would grow 1.7x. This scalar
surpasses the experimentally-set threshold of 1.4, thus the
saliency map union is accepted and set as the new global map.

Applying GradCam over the next most-confidently pre-
dicted class, ”Tiger Cat”, yields a saliency map that would
yielding a 1.0x saliency growth over the global map. Falling
under the 1.4 threshold, the proposed addition of saliency is
rejected, and no further output classes are inspected. This ac-
tion demonstrates the ability of the proposed method to han-
dle competing classes for the same object in the scene (the
cat, in this case, since the previous prediction ”Egyptian Cat”
was already considered).

Now having computed the final global multi-class saliency
map shown in Figure 4, such map can be decomposed into
visual attention regions. This is accomplished by forming an
image-wide mask, applying a condition to the saliency gath-
ered for each input pixel. Experimentally, it was found that a
suitable condition for detecting separate regions is ignoring
the 88% least salient pixels.

Figure 4: Global saliency
map for input image

In other words, only the
top 12% most attention-
grabbing pixels continue to
the next layer of process-
ing. The resulting mask, vi-
sualized by Figure 5 con-
tains at least one continuous
segment(s), each of which
corresponds to a unique vi-
sual attention region. Since
such boolean segments are
bounded (all surrounded by
ignored pixels), the number
of visual attention regions
are deterministically count-
able with trivial methods.

Figure 5: Boolean mask
reflecting pixels above
88th percentile level of
saliency

In this example, three
significant attention peaks
are found. Though expected
to find more than one, a the-
oretical detection of two at-
tention regions is more log-
ical, given the two princi-
ple actors in the scene. This
observation highlights an-
other potential flaw to the
proposed method in its el-
ementary state: not all at-
tention regions are equal.
The filtration of pixels be-
low the 88th percentile of
saliency attempts to address
this concern, but even once

the mask is formed, regions themselves exhibit varying char-
acteristics: size, shape, and mutual proximity. As suggested
by the saliency peak mask generated over the input image, the
attention region over the dog is noticeably more prominent
than that over the cat’s mid-figure, by our human intuition.
However, these regions are counted equally. Yes, this serves
the purpose of separating single-attention-region cases from
multi-region cases, but a gap in region expectation versus re-
ality still remains.

Having detecting multiple attention regions, the
knowledge-based agent will delegate the compositional
guidance task to the Procedural module for further process-
ing.

Single Attention Region Example

The same processing workflow from above is applied to
the image presented in Figure 6. Resnet50 predicts the fol-
lowing class distribution, ordered by descending probability:

1. Castle: 69%
2. Cliff: 6%
3. Palace: 3%

and so on.



Figure 6: An example
single-class input image

Note that in the cas-
tle example, the runner-up
classification result, ”Cliff”,
generated a saliency map
very similar to that of
”Castle”, thus the proposed
saliency map combination
process terminated with
only the dominant class
prediction influencing the
global map (Figure 7).

Here, a single peak vi-
sual attention region is found across the mask visualized
in Figure 8. The knowledge-based agent will interpret this
finding, falling onto the Episodic module for compositional
guidance resolution.

Figure 7: Saliency map for
output class ”Castle”, also
serving as the final global
map

Figure 8: Saliency peak
mask, utilizing 88th per-
centile

Image Descriptor Engineering & KNN
Considerations
The agent’s Episodic module depends on the ability to re-
call similar, previously seen images. This fundamental task
requires storing and comparing a consistent vector represen-
tation of image saliency, called a descriptor. The size of such
designed descriptor obeys a compromise between detail and
generaliability. That is, larger sized descriptors effectively
embody high-granularity features, but a match is only pro-
duced when the query descriptor happens to reflect the same
degree of feature detail. By contrast, smaller sized descrip-
tors smooth over more granular features, but the simplified
nature of the representation allows query descriptors to con-
sistent yield more reasonable, ballpark matches.

Ideally, a suitable middle ground is chosen between these
extremes. Through this work’s initial tests, the most appro-
priate descriptor dimension is 36 - resulting from a 6x6
downsized saliency map, flattened into a single dimension,
pictured in Figure 9. This choice of descriptor size allows for
encoding of high-level visual information, such as greater at-
tention region position and spread, without being dominated
by small-scale, image-specific idiosyncrasies.

Figure 9: Downsized saliency map for castle image, L2
normed and flattened to form a descriptor vector

A well-designed saliency descriptor alone cannot guar-
antee effective retrieval of memorized high-aesthetic image
cases; the volume and diversity of Episodic cases themselves
must exhibit substantive coverage over the space of plausible
queries. To analyze the spread of cases by primary prediction
class, a preliminary data profiling study is run over 1000 im-
ages randomly downloaded from the Unsplash professional
image database. Of the 1000 collected images, 724 exhibit a
single visual attention region (following the previously out-
lined workflow). Descriptors are formed and pooled by top
classified category.

Figure 10: Downsized saliency map for castle image, L2
normed and flattened to form a descriptor vector

As suggested by Figure 10, the collected prediction class
distribution exhibits higher frequency for some classes more
than others. For instance, the most commonly observed
dominant class (”Alp”) spans 47 case. On the other hand,
766 of Resnet50’s 1000 output classes are unpopulated.

These initial findings encourage a degree of skepticism
regarding the agent’s ability to construct a robust, com-
plete case index within its Episodic module. With one KNN
built to support saliency search functionality for each output
class, many queries will meet no resolution if output class is



fully unrepresented.
Deeper, even if the class’ corresponding KNN contains

a few examples, low case volume will produce uninsightful
matches, since a match of higher similarity is less likely. Op-
timistically, one may simultaneously expect image classes
to be unevenly distributed; although many output classes
are left unrepresented, this phenomenon may occur be-
cause those classes are less frequently observed themselves
in real-world images. In this experiment, the output class
”seashore” was observed 27 times, while ”lab-coat”, ”letter-
opener”, and ”jigsaw puzzle” were never encountered. In
all, though the complete 1000-class distribution is empty
in majority, only rarely captured, unanticipated subjects are
left underrepresented; expected, commonly observed sub-
jects tend to maintain adequate case volume for insightful
match retrieval.

Application of Methodology

Experiment Setup
The proposed computational framework is implemented as
a series of dependent subroutines. This reflects the modular
structure of the SOAR cognitive model and its inner work-
ings. As performed in the working memory module, a multi-
class saliency map is generated for an input image, on top of
which the number of saliency regions is inferred by Figure
5. If multiple classes are inferred, the subroutine encompass-
ing procedural memory is invoked. This will directly return
composition guidance instructions back to the caller. If a sin-
gle class is invoked, the subroutine encompassing a lookup
over the KNN image library is performed, also directly re-
turning back to the caller.

For ease of experimentation, all subroutines are defined
within distinct code cells of a Jupyter Notebook. This allows
code segments to be executed ad-hoc, with complete inte-
gration of graphical output. This methodology is powerful,
for instance, when simply regenerating graphics following a
variable change, instead of re-executing the entire script. As
a result, experiment efficiency remains high while computa-
tional cost and runtime are kept to a practical minimum.

This code structure not only enables, but encourages fur-
ther experimentation and results reproduction. This work
intends to stand as a foundational contribution to the
Knowledge-Based AI field of research. That is, parameters
may be tuned, new images may be evaluated, and new fea-
tures may be integrated as future research requires.

Executing Compositional Guidance Deliberation
Up to this point, image preprocessing stages (saliency map
generation, region count, etc) are complete. However, a log-
ical process is required to evaluate the underlying features
and compute a compositional guidance result.

In the case of multiple saliency regions, a global attention
region is modelled by a 2D Normal distribution overlaying
the image. This is formed by collapsing the saliency map
across the x and y axes, respectively, each used to model
a 1D Normal distribution. From here, a 2D Normal Distri-
bution is formed with the center coordinate formed by the

respective x and y centers, and uniform covariance as the
maximum of variances along the x or y axes. Note that co-
variance is designed to be uniform in order to form an atten-
tion distribution with equal spread along the x and y axes.

Figure 11: Saliency of Cat and Dog image (Figure 1) col-
lapsed to the x direction, modelled as 1D Normal Distribu-
tion

Figure 12: Saliency of Cat and Dog image (Figure 1) col-
lapsed to the y direction, modelled as 1D Normal Distribu-
tion

Figure 13: Saliency of Cat and Dog image (Figure 1) mod-
elled as 2D Normal Distribution, with covariance 482 be-
cause y variance is greater than x variance.

This allows cases where the true global saliency region is
”long and skinny” to avoid being ”cutoff” by the suggested
composition due to the smaller directional variance skewing
the Normally Distributed saliency region’s size.

Figures 11, 12, and 13 illustrate this process visually.



From here, if a significant enough compositional adjust-
ment is necessary to center the Normalized attention region
(move left, right, up, or down) with appropriate scale (zoom
in or out) to justify compositional guidance, such instruc-
tions are generated according to the following procedure:

1. Initialize horizontal action, vertical action, and zoom ac-
tion to empty (no instruction)

2. If the modeled horizontal center deviates from the image
center by tolerance% of image width, set horizontal action
to ”left” or ”right”, as appropriate.

3. If the modeled vertical center deviates from the image
center by tolerance% of image width, set vertical action
to ”up” or ”down”, as appropriate.

4. If the modeled attention covariance surpasses 7000 (as-
suming image width 224 pixels), the attention region has
significant spread; set zoom action to ”zoom out”. If the
covariance falls below 3000, by contrast, suggest ”zoom
in”. Note that 7000 and 3000 were determined experimen-
tally, and may be treated as a parameter defined by sub-
jective preference for degree of zoom.

In these experiments, tolerance% is set to 5%, meaning
the composition is considered ”good enough” if within 5%
of the optimal configuration. This tolerance can be tuned by
in future work as well.

In the case of a single detected saliency region, obtain the
closest episodic result by forming a saliency description and
querying the KNN case library. Perform the same 2D Nor-
mal Distribution modelling over the attention region for both
the input image and the closest case. Then, treating the at-
tention distribution over the input image as the image center,
execute the logical process outlined above.

Concretely, if the attention region of the closest case holds
a different position and scale relative to that of the input re-
gion, the agent will generate and return compositional guid-
ance such that the input image may more closely resemble
the retrieved case.

Presentation of Results
The below results illustrate the image given as input to the
agent, and the resulting composition achieved by following
the agent’s compositional guidance. This inference process
may be repeated multiple times, continually improving im-
age composition in the pursuit of maximizing aesthetics of
the capture.

Multiple Saliency Regions

Figure 14: Compositional guidance computed and applied to
Figure 1



Figure 15: Compositional guidance computed and applied to
an image of a notebook computer and coffee on a desk



Single Saliency Region

Figure 16: Compositional guidance computed and applied to
an image of a soccer ball



Evaluation of Results

Drawing Conclusions
Because the underlying idea of this project is to model hu-
man intuition, it is expected that the agent’s generated com-
positional guidance follows a reasonable and explainable
deliberation process. In the first example (Figure 14), the
agent expresses a desire to achieve higher aesthetic quality
by repositioning up and to the right, zooming in to fill the
scene with the eye-catching subjects. In the second example
(Figure 15), the agent believes no horizontal shift is nec-
essary, but a downward repositioning and inward zoom are
beneficial. When a single attention region dominates the in-
put image, as in the example encompassing Figure 16, the
agent wishes to reposition the frame upward to match the
closest known example of an aesthetic image. No zoom is
suggested, as the attention distribution spread of the input
image is already similar enough to that of the closest re-
trieved case.

On the surface, the model generated productive guid-
ance instructions. Yes, the internally leveraged constants and
thresholds can be tuned to fit any subjective eye, but im-
provements are made across the general rules of composi-
tion and aesthetic quality expressed earlier.

However, the AI does not always perform perfectly. For
instance, by zooming in the on image behind (Figure 15),
the top of the coffee mug is slightly clipped by the upper
bound of the frame, thus creating tension in the image. This
is a minute detail the model does not explicitly address, thus
exhibiting that real-world edge cases are certain to arise and
result in situation compositional flaws.

Through my experiments, I noticed a second shortcom-
ing of this computational model - When compounding the
agent’s compositional guidance (that is, applying guidance
to an image repetitively in search of the optimally aesthetic
composition), the number of saliency regions may switch
from multiple to singular, or vice versa. As a result, the cog-
nitive model re-routes the deliberation knowledge to differ-
ent modules (procedural and episodic), and the agent’s com-
positional feedback may attempt to achieve a different com-
positional vision.

Lastly, the success of single-saliency-region queries de-
pend on a sufficient space of known and preprocessed cases.
With regards to Figure 16, the agent found a clearly similar
case to relate to the query, but through experimentation, it is
clear that this is not always the case. This notion reinforces
the SOAR cognitive architecture’s standing as a theoretic
framework - implementing as a concrete technical model
would require a high degree of quantitative knowledge (im-
age datasets) to function with high quality in a grand major-
ity of real-world cases.

Comparison with Existing Literature
The literature review conducted in the previous discussion of
related topics suggested that humans perceive high aesthetic
quality when balance, symmetry, and normalness are visu-
ally present. This work validates this literature review by
computation implementation, and evaluation of generated
results. Beyond simply suggesting productive compositional

changes, this project’s environment provides the unique ca-
pability of simulating such advice (by applying the repo-
sitioning and zoom to each image) to directly evaluate the
quality of guidance. In all cases, the simulated result follow-
ing guidance execution reflects a greater degree of symme-
try, interest, or relevance to a ”typical”, or ”normal”, known
case.

Of course, more work is required to bridge the gap be-
tween the current state of human-cognitive theory and com-
putational models. This project’s approach is a simple, foun-
dational, prototype. Many edge cases are not address, just
as many implications still arise that could benefit from ad-
vancements in this method.

Potential Implications
• Inflated ease of artistic creation - With an AI assistant

to build effective photographic compositions, less empha-
sis is placed on the photographer to adopt and strengthen
this skill. Later on, in a scenario where this technology is
not available, the artist cannot maintain the same effec-
tiveness in the creation of their works.

• Lack of quality guarantee - as concluded, though the
model is effective in its simplified task, it may struggle
against the unique, fine-grain perspectives of the real-
world. As a result, the agent may suggest potentially un-
aesthetic compositional suggestion. This may arise due to
incorrect or inaccurate subject recognition, lack of simi-
lar known cases, idiosyncrasies within the scene, etc. In-
cluded in these list of reasons is the bounded effectiveness
of the proposed method itself. In all, always relying on
this method for achieving high-quality composition is not
the answer to always optimizing image aesthetics.

• Discrimination of subjects - due to the agent’s depen-
dence on other classical Machine Learning methods with
their own implications, there stands a possibility that dis-
tinct subjects in the scene are discriminated by gender,
age, skin color, etc. Deeper, with the agent potentially
placing a greater degree of ”emphasis” on one subject
compared to another, the resulting compositional guid-
ance will aim to highlight or focus on that subject, leaving
out the other.

• Aesthetics as an objective measure - Aesthetic quality is
unarguably subjective by human nature. Any given image
and its composition may be pleasing or displeasing to two
different individuals. This work aims to provide a middle-
ground innovation, a perspective that is most relatively
agreeable out of all perceptions. Still, the framework pro-
posed in this project relies on several fixed parameters and
other human-behavioral assumptions. It should be clearly
expressed that the compositional guidance generated by
this agent is not objective, and each individual’s personal
opinion of image aesthetics remains completely valid.

Conclusions
Reflection on Results and Main Claims
Looking back to the early conception of this proposed
method and the chosen scope of this work, one can argue



that success is achieved for the set goal - providing com-
positional guidance to improve image composition aesthet-
ics through a KBAI approach. Deeper, subtasks (multi-class
saliency, fetching recorded cases) and objectives are han-
dled on a situational basis, reflecting the hypothetical SOAR
cognitive architecture in executable program form. Still, one
must not forget that this success is only achieved partly be-
cause the selected task was overly simplified.

Though the main claim is supported by this report, the
framework does not operate with high proficiency at a se-
mantic level, that of human understanding and cognition.
This is apparent by the pitfalls of the generated composi-
tional guidance analyzed previously.

Additionally, I am not confident that this method applied
to a simplified target task applies as appropriately to more re-
fined, granular, complex compositional guidance tasks. Not
only does this framework rely on key assumptions such
as the accuracy of the GradCAM algorithm, its underly-
ing image classifier, mutli-class saliency being normally dis-
tributed across the image plane etc. Also, as task complexity
grows, a more intelligent model will require an even greater
degree of experimentation and edge case evaluation and han-
dling - a degree of experimentation that may require signifi-
cant time for even entire teams of AI engineers.

Future Work
If this project continued along a timeline greater than the
length of the semester, I would place emphasis on and fur-
ther explore the below considerations.

• Single-Object Case Coverage. The current state of this
work processes a segment of the Unsplash image dataset
to construct the basis for the episodic memory module.
Beyond leveraging more memory to support a larger KNN
index, more time can be spent to process the Unsplash
dataset in its entirety, or even encode episodic cases over
the massive ImageNet or Cifar datasets used to train large
state-of-the-art computer vision models.

• Saliency Encoding Scheme Engineering. This work
encodes image saliency into vector descriptor form by
downsizing the saliency map, flattening into a single di-
mension, and normalizing by euclidean distance into a
unit-magnitude vector. This is a simple encoding scheme
used to intuitively build descriptor vectors, but that does
not mean the vector descriptor output is the most in-
formation dense for the given vector size. I hypothesize
that there exists a more efficient saliency descriptor rep-
resentation that can be achieved by leveraging unsuper-
vised methods such as dimensionality reduction by Prin-
cipal Component Analysis (PCA) or Auto-Encoder Neu-
ral Networks as sub-modules to the episodic component
of SOAR. Further, this reduction in descriptor size will
allow more recorded cases to fit into the memory-backed
KNN, allowing for image queries to draw from a larger
episodic library.

• Continuous Learning and Chunking Functionality.
One strength of the SOAR cognitive model is the ability
to impose continuous learning. That is, as the composi-
tional guidance agent yields incorrect or generally unfa-

vorable outputs, the agent learns to reinforce other exam-
ples or logical pathways to reduce occurrence of the error
or similar errors in the future. Currently, this implemen-
tation of SOAR is focused on performing inference from
the devised procedural and episodic workflows. Deeper,
chunking is the process of instituting a new rule to re-
solve procedural conflicts - when multiple asserts collide
and contradict, or no assertions arise to begin with. Recall
that the episodic case distribution is not complete across
all classes. For the agent to be maximally robust, it needs a
mechanism to handle when the single-object query image
pictures an unrepresented, unstored class. In the future,
design and integration of a continuous learning process
will not only build a smarter agent, but allow it to adapt
appropriately to increase guidance quality as agent use in-
creases!

• Integration of the Semantic Memory Module. Recall
that the currents state of this work approximates the func-
tion of the SOAR architecture by ignoring the role of
Semantic Memory. This is because representing, storing,
and drawing from semantics is a complex task for compu-
tational systems. In all, this is the core struggle and area
of innovation in the field of Knowledge-Based AI. How-
ever, concrete knowledge representations do exist, such
as semantic networks or frames, that allow semantic in-
formation to be stored and queried. Currently, the agent
deliberates a compositional action based on its visual per-
ception. However, if the agent can develop the ability to
develop a semantic understanding of the scene’s setting,
scenario, relationship between complimentary or compet-
ing subjects, etc., more informed composition guidance
will result. More generally, the current work observes the
image’s ”what” before performing inference, though an
even more robust framework would build upon the ”why”
and ”how” of collective scene contents themselves.

Key Points and Takeaways
Image composition lies in an open-ended artistic do-
main, with computation and AI existing in a closed-form,
calculated space. This work demonstrates the ability of
Knowledge-Based AI in bridging the gap between the two
seemingly disjoint disciplines. The theory-driven SOAR
cognitive architecture, as shown, can successfully occupy
the form of programmatic logic when applied to a specific
concrete task such as composition guidance. Still, this agent
prototype finds success in a simplified world model, where
perception is limited to the given image itself and a pre-
processed visual object knowledge base. Further improve-
ments are encouraged by later development of SOAR mech-
anisms such as continuous learning and a knowledge base
with greater semantic, not recorded case, emphasis. Ulti-
mately, this work lays a firm groundwork of logical design
and experimentation atop which future innovations between
AI and the visual and artistic domain are possible, motivated,
and encouraged.
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